Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[(2,3,4,5,6-Pentafluorophenyl)ethynyl]ferrocene

Chan Zhang,* Honglin Zhang, Dongdong Dai and Jinhua Liang

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: zhangchan20050333@163.com

Received 29 June 2010; accepted 6 July 2010

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.105; data-to-parameter ratio = 11.7.

The molecular structure of the title compound, $[Fe(C_5H_5)-$ (C₁₃H₄F₅)], consists of a ferrocenyl group and a 2,3,4,5,6pentafluorobenzene group linked through an ethyne spacer. The crystal packing is dominated by intermolecular $C-H\cdots F$ hydrogen bonds, $C-F \cdots \pi$ interactions between the pentafluorobenzene groups [F...centroid distances = 3.882 (2) and 3.884 (2) Å] and $\pi - \pi$ interactions between the pentafluorobenzene and cyclopentadienyl rings [centroid-centroid distance = 3.741(1) Å].

Related literature

For general background to ferrocene derivatives, see: Debroy & Roy (2007). For a related structure, see: Valdebenito et al. (2010). For the synthesis, see: Torres et al. (2002); Zora et al. (2006).

Experimental

Crystal data

$[Fe(C_5H_5)(C_{13}H_4F_5)]$	$\gamma = 78.726 \ (2)^{\circ}$
$M_r = 376.10$	$V = 731.41 (18) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 6.0767 (9) Å	Mo $K\alpha$ radiation
b = 10.7164 (15) Å	$\mu = 1.08 \text{ mm}^{-1}$
c = 12.6014 (18) Å	$T = 292 { m K}$
$\alpha = 65.725 \ (2)^{\circ}$	$0.30 \times 0.04 \times 0.02 \text{ mm}$
$\beta = 89.364 \ (3)^{\circ}$	

Data collection

Bruker SMART APEX CCD diffractometer 4793 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	217 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
2533 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

2533 independent reflections 2169 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.021$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C10-H10\cdots F5^{i}$	0.93	2.50	3.176 (3)	130
Symmetry code: (i) _	$x \perp 1 = y \perp 2$	_7 ⊥ 2		

metry code: (i) -x + 1, -y + 2, -

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to Mr Xianggao Meng for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2327).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Debroy, P. & Roy, S. (2007). Coord. Chem. Rev. 251, 203-221.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Torres, J. C., Pilli, R. A., Vargas, M. D., Violante, F. A., Garden, S. J. & Pinto, A. C. (2002). Tetrahedron, 58, 4487-4492.
- Valdebenito, C., Garland, M. T., Fuentealba, M. & Escobar, C. A. (2010). Acta Cryst. E66, m838.
- Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327-m330.

Acta Cryst. (2010). E66, m914 [doi:10.1107/S1600536810026772]

1-[(2,3,4,5,6-Pentafluorophenyl)ethynyl]ferrocene

C. Zhang, H. Zhang, D. Dai and J. Liang

Comment

Ferrocene derivatives with linear, unsaturated side-arms show altered unique properties, such as electrical conductivity, thermal stability, magnetic, electronic, redox and non-linear optical behaviors, compared to their saturated derivatives (Debroy & Roy, 2007).

The molecular structure of the title compound is composed of a ferrocenyl group and a pentafluorobenzene group joined by an organic ethyne spacer. Two cyclopentadienyl rings of the ferrocenyl group are parallel (Valdebenito *et al.*, 2010). The main features of the structure are an intermolecular C—H···F hydrogen bond between the ferrocenyl and pentafluorobenzene (Table 1), C—F··· π interactions between the pentafluorobenzene groups [F···centroid distances = 3.882 (2) and 3.884 (2) Å] and a π - π interaction between the pentafluorobenzene and cyclopentadienyl rings [centroid-centroid distance = 3.741 (1) Å].

Experimental

The title compound was synthesized according to a modified literature procedure (Torres *et al.*, 2002; Zora *et al.*, 2006). 1,2,3,4,5-Pentafluoro-6-iodobenzene (735 mg, 2.5 mmol) and ethynylferrocene (525 mg, 2.5 mmol) were added to a mixture of Cu(CH₃CO₂)₂ (40 mg, 0.2 mmol), Pd(PPh₃)₂Cl₂ (140 mg, 0.2 mmol) and ⁱPr₂NH (30 ml) under argon. The resulting mixture was refluxed at 365 K for 18 h. The solution was then extracted with dichloromethane, washed with water and dried over Na₂SO₄. Final purification was achieved by flash column chromatography on silica gel using dichloromethane/petroleum (1:4) as eluant. The product was obtained in 30% yield. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution of the compound in dichloromethane/hexane (1:10 v/v) at room temperature.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

1-[(2,3,4,5,6-Pentafluorophenyl)ethynyl]ferrocene

Crystal data $[Fe(C_5H_5)(C_{13}H_4F_5)] \qquad Z = 2$

$M_r = 376.10$	F(000) = 376
Triclinic, PT	$D_{\rm x} = 1.708 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 6.0767 (9) Å	Cell parameters from 1760 reflections
b = 10.7164 (15) Å	$\theta = 3.3 - 25.1^{\circ}$
c = 12.6014 (18) Å	$\mu = 1.08 \text{ mm}^{-1}$
$\alpha = 65.725 \ (2)^{\circ}$	T = 292 K
$\beta = 89.364 \ (3)^{\circ}$	Plate, yellow
$\gamma = 78.726 \ (2)^{\circ}$	$0.30 \times 0.04 \times 0.02 \text{ mm}$
$V = 731.41 (18) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD diffractometer	2169 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.021$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
φ and ω scans	$h = -7 \rightarrow 7$
4793 measured reflections	$k = -12 \rightarrow 12$
2533 independent reflections	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.105$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0602P)^2 + 0.0784P]$ where $P = (F_o^2 + 2F_c^2)/3$
2533 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
217 parameters	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	0.72848 (6)	0.78028 (4)	0.74835 (3)	0.03952 (17)
C1	0.7513 (5)	0.5868 (3)	0.8801 (3)	0.0544 (8)
H1	0.7967	0.5607	0.9578	0.065*
C2	0.8930 (6)	0.5793 (3)	0.7932 (3)	0.0603 (9)
H2	1.0483	0.5472	0.8031	0.072*
C3	0.7575 (6)	0.6290 (3)	0.6885 (3)	0.0629 (9)
Н3	0.8079	0.6360	0.6167	0.075*
C4	0.5318 (5)	0.6666 (3)	0.7110 (3)	0.0550 (8)
H4	0.4074	0.7022	0.6570	0.066*

C5	0.5292 (5)	0.6405 (3)	0.8295 (3)	0.0534 (8)
H5	0.4024	0.6561	0.8679	0.064*
C6	0.8628 (5)	0.8977 (3)	0.8131 (3)	0.0466 (7)
C7	0.9602 (5)	0.9037 (3)	0.7080 (3)	0.0537 (8)
H7	1.1120	0.8756	0.7001	0.064*
C8	0.7850 (6)	0.9598 (3)	0.6182 (3)	0.0612 (9)
H8	0.8017	0.9753	0.5406	0.073*
C9	0.5823 (6)	0.9883 (3)	0.6656 (3)	0.0620 (9)
Н9	0.4417	1.0264	0.6245	0.074*
C10	0.6256 (5)	0.9498 (3)	0.7858 (3)	0.0535 (8)
H10	0.5195	0.9569	0.8379	0.064*
C11	0.9780 (5)	0.8492 (3)	0.9247 (3)	0.0506 (7)
C12	1.0717 (5)	0.8129 (3)	1.0184 (3)	0.0524 (7)
C13	1.1670 (5)	0.7703 (3)	1.1340 (2)	0.0434 (6)
C14	1.3917 (5)	0.7049 (3)	1.1689 (2)	0.0441 (7)
C15	1.4796 (5)	0.6621 (3)	1.2811 (3)	0.0496 (7)
C16	1.3452 (6)	0.6841 (3)	1.3614 (2)	0.0539 (8)
C17	1.1218 (6)	0.7482 (3)	1.3302 (3)	0.0551 (8)
C18	1.0362 (5)	0.7906 (3)	1.2187 (3)	0.0518 (8)
F1	1.5272 (3)	0.68281 (19)	1.09132 (16)	0.0650 (5)
F2	1.6961 (3)	0.59629 (19)	1.31194 (17)	0.0709 (5)
F3	1.4306 (4)	0.6459 (2)	1.46997 (16)	0.0892 (7)
F4	0.9884 (4)	0.7688 (2)	1.40989 (18)	0.0896 (7)
F5	0.8196 (3)	0.85479 (19)	1.19000 (19)	0.0741 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0398 (3)	0.0418 (3)	0.0403 (3)	-0.01159 (17)	0.00257 (18)	-0.01908 (19)
C1	0.067 (2)	0.0416 (15)	0.0485 (18)	-0.0124 (14)	-0.0050 (16)	-0.0118 (14)
C2	0.0542 (19)	0.0474 (17)	0.085 (3)	-0.0053 (14)	0.0022 (18)	-0.0358 (17)
C3	0.085 (2)	0.0606 (19)	0.065 (2)	-0.0260 (17)	0.0217 (19)	-0.0425 (18)
C4	0.0571 (19)	0.0602 (18)	0.060 (2)	-0.0209 (15)	-0.0019 (16)	-0.0336 (16)
C5	0.0535 (19)	0.0519 (17)	0.059 (2)	-0.0222 (14)	0.0127 (16)	-0.0228 (15)
C6	0.0520 (18)	0.0408 (14)	0.0502 (17)	-0.0126 (12)	-0.0047 (14)	-0.0207 (13)
C7	0.0466 (17)	0.0569 (17)	0.057 (2)	-0.0210 (14)	0.0025 (15)	-0.0188 (15)
C8	0.069 (2)	0.0617 (19)	0.0443 (18)	-0.0308 (17)	-0.0013 (16)	-0.0060 (15)
С9	0.056 (2)	0.0463 (17)	0.071 (2)	-0.0078 (14)	-0.0208 (17)	-0.0127 (16)
C10	0.0512 (18)	0.0439 (15)	0.067 (2)	-0.0031 (13)	-0.0014 (15)	-0.0278 (15)
C11	0.0554 (19)	0.0433 (15)	0.0563 (19)	-0.0155 (13)	-0.0044 (15)	-0.0215 (14)
C12	0.0585 (19)	0.0470 (16)	0.055 (2)	-0.0173 (14)	-0.0031 (16)	-0.0210 (15)
C13	0.0499 (17)	0.0384 (14)	0.0460 (16)	-0.0157 (12)	0.0008 (13)	-0.0188 (13)
C14	0.0471 (17)	0.0444 (14)	0.0464 (17)	-0.0138 (12)	0.0086 (14)	-0.0228 (13)
C15	0.0514 (18)	0.0406 (15)	0.0554 (19)	-0.0124 (13)	-0.0034 (15)	-0.0173 (14)
C16	0.085 (2)	0.0417 (15)	0.0356 (16)	-0.0192 (15)	-0.0014 (16)	-0.0136 (13)
C17	0.080 (2)	0.0444 (16)	0.0496 (19)	-0.0222 (15)	0.0240 (17)	-0.0240 (14)
C18	0.0484 (18)	0.0395 (15)	0.068 (2)	-0.0123 (13)	0.0092 (16)	-0.0218 (15)
F1	0.0653 (12)	0.0744 (11)	0.0630 (11)	-0.0143 (9)	0.0201 (9)	-0.0366 (10)

F2	0.0557 (12)	0.0658 (11)	0.0808 (13)	-0.0075 (9)	-0.0152 (10)	-0.0222 (10)
F3	0.147 (2)	0.0710 (12)	0.0463 (11)	-0.0216 (13)	-0.0146 (12)	-0.0211 (10)
F4	0.1264 (19)	0.0795 (13)	0.0750 (13)	-0.0281 (12)	0.0557 (13)	-0.0424 (11)
F5	0.0497 (11)	0.0640 (11)	0.1014 (15)	-0.0069 (9)	0.0147 (10)	-0.0299 (11)
Geometric param	neters (Å, °)					
Fe1—C3		2.029 (3)	C6—0	210	1.43	0 (4)
Fe1—C2		2.032 (3)	С7—С	28	1.41	1 (4)
Fe1—C1		2.034 (3)	C7—H	47	0.93	00
Fe1—C7		2.037 (3)	C8—0	C9	1.39	8 (4)
Fe1—C8		2.040 (3)	C8—H	-18	0.93	00
Fe1—C10		2.042 (3)	С9—С	C10	1.40	9 (4)
Fe1—C5		2.044 (3)	C9—H	-19	0.93	00
Fe1—C6		2.044 (3)	C10—	-H10	0.93	00
Fe1—C9		2.045 (3)	C11—	-C12	1.19	1 (4)
Fe1—C4		2.047 (3)	C12—	-C13	1.42	7 (4)
C1—C2		1.404 (4)	C13—	-C18	1.38	6 (4)
C1—C5		1.405 (4)	C13—	-C14	1.39	1 (4)
C1—H1		0.9300	C14—	-F1	1.33	6 (3)
C2—C3		1.406 (5)	C14—	-C15	1.37	2 (4)
С2—Н2		0.9300	C15—	-F2	1.34	2 (3)
C3—C4		1.412 (4)	C15—	-C16	1.36	0 (4)
С3—Н3		0.9300	C16—	-F3	1.33	5 (3)
C4—C5		1.402 (4)	C16—	-C17	1.37	6 (5)
C4—H4		0.9300	C17—	-F4	1.34	5 (3)
С5—Н5		0.9300	C17—	-C18	1.36	0 (4)
C6—C11		1.421 (4)	C18—	-F5	1.33	7 (3)
С6—С7		1.426 (4)				
C3—Fe1—C2		40.51 (13)	C5—C	C4—C3	107.	6 (3)
C3—Fe1—C1		67.85 (13)	C5—C	C4—Fe1	69.8	3 (16)
C2—Fe1—C1		40.41 (12)	C3—C	C4—Fe1	69.0	8 (17)
C3—Fe1—C7		118.88 (13)	C5—C	С4—Н4	126.	2
C2—Fe1—C7		108.34 (13)	C3—C	С4—Н4	126.	2
C1—Fe1—C7		128.23 (13)	Fe1—	C4—H4	126.4	4
C3—Fe1—C8		109.38 (14)	C4—C	C5—C1	108.	2 (3)
C2—Fe1—C8		129.09 (14)	C4—C	C5—Fe1	70.0	7 (16)
C1—Fe1—C8		166.63 (13)	C1—0	C5—Fe1	69.4	7 (16)
C7—Fe1—C8		40.51 (12)	C4—C	С5—Н5	125.	9
C3—Fe1—C10		166.11 (14)	C1—0	С5—Н5	125.	9
C2—Fe1—C10		151.56 (14)	Fe1—	С5—Н5	126.	1
C1—Fe1—C10		117.85 (13)	C11—	-C6—C7	126.	8 (3)
C7—Fe1—C10		68.73 (12)	C11—	-C6—C10	125.	8 (3)
C8—Fe1—C10		68.07 (14)	С7—С	C6—C10	107.4	4 (3)
C3—Fe1—C5		67.75 (13)	C11—	-C6—Fe1	126.4	48 (19)
C2—Fe1—C5		67.92 (13)	С7—С	C6—Fe1	69.2	9 (15)
C1—Fe1—C5		40.30 (12)	C10—	-C6—Fe1	69.4	4 (16)
C7—Fe1—C5		165.96 (12)	C8—0	С7—С6	107.	7 (3)
C8—Fe1—C5		152.15 (13)	C8—0	C7—Fe1	69.8	5 (17)

C10—Fe1—C5	107.70 (13)	C6—C7—Fe1	69.79 (16)
C3—Fe1—C6	152.12 (14)	С8—С7—Н7	126.1
C2—Fe1—C6	117.98 (13)	С6—С7—Н7	126.1
C1—Fe1—C6	107.64 (12)	Fe1—C7—H7	125.8
C7—Fe1—C6	40.92 (11)	C9—C8—C7	108.5 (3)
C8—Fe1—C6	68.29 (13)	C9—C8—Fe1	70.17 (17)
C10—Fe1—C6	40.98 (11)	C7—C8—Fe1	69.64 (17)
C5—Fe1—C6	127.66 (12)	С9—С8—Н8	125.8
C3—Fe1—C9	129.10 (14)	С7—С8—Н8	125.8
C2—Fe1—C9	166.84 (14)	Fe1—C8—H8	126.0
C1—Fe1—C9	151.75 (14)	C8—C9—C10	108.9 (3)
C7—Fe1—C9	67.90 (13)	C8—C9—Fe1	69.80 (18)
C8—Fe1—C9	40.03 (13)	C10-C9-Fe1	69.72 (16)
C10—Fe1—C9	40.35 (12)	С8—С9—Н9	125.5
C5—Fe1—C9	118.81 (13)	С10—С9—Н9	125.5
C6—Fe1—C9	68.10 (12)	Fe1—C9—H9	126.5
C3—Fe1—C4	40.53 (13)	C9—C10—C6	107.4 (3)
C2—Fe1—C4	68.12 (13)	C9—C10—Fe1	69.93 (17)
C1—Fe1—C4	67.74 (13)	C6—C10—Fe1	69.58 (15)
C7—Fe1—C4	152.61 (13)	С9—С10—Н10	126.3
C8—Fe1—C4	119.34 (13)	С6—С10—Н10	126.3
C10—Fe1—C4	127.70 (12)	Fe1—C10—H10	125.8
C5—Fe1—C4	40.10 (12)	C12—C11—C6	177.7 (3)
C6—Fe1—C4	165.50 (12)	C11—C12—C13	175.5 (3)
C9—Fe1—C4	109.02 (13)	C18—C13—C14	116.4 (3)
C2—C1—C5	108.3 (3)	C18—C13—C12	120.9 (3)
C2—C1—Fe1	69.73 (17)	C14—C13—C12	122.7 (3)
C5—C1—Fe1	70.23 (16)	F1—C14—C15	118.6 (3)
C2—C1—H1	125.8	F1—C14—C13	119.4 (3)
C5—C1—H1	125.8	C15-C14-C13	122.0 (3)
Fe1—C1—H1	125.8	F2	120.2 (3)
C1—C2—C3	107.6 (3)	F2	120.1 (3)
C1—C2—Fe1	69.86 (16)	C16—C15—C14	119.6 (3)
C3—C2—Fe1	69.65 (17)	F3—C16—C15	120.0 (3)
С1—С2—Н2	126.2	F3—C16—C17	119.9 (3)
С3—С2—Н2	126.2	C15—C16—C17	120.0 (3)
Fe1—C2—H2	125.9	F4—C17—C18	120.1 (3)
C2—C3—C4	108.3 (3)	F4—C17—C16	120.0 (3)
C2—C3—Fe1	69.84 (17)	C18—C17—C16	119.9 (3)
C4—C3—Fel	70.39 (17)	F5—C18—C17	118.8 (3)
C2—C3—H3	125.8	F5—C18—C13	119.2 (3)
C4—C3—H3	125.8	C17—C18—C13	122.0 (3)
re1—C3—H3	125.5		
C3—Fe1—C1—C2	37.99 (19)	C1—Fe1—C6—C10	-112.43 (19)
C7—Fe1—C1—C2	-72.1 (2)	C7—Fe1—C6—C10	118.9 (3)
C8—Fe1—C1—C2	-42.6 (6)	C8—Fe1—C6—C10	81.1 (2)
C10—Fe1—C1—C2	-155.99 (19)	C5—Fe1—C6—C10	-72.4 (2)
C5—Fe1—C1—C2	119.2 (3)	C9—Fe1—C6—C10	37.84 (18)
C6—Fe1—C1—C2	-112.7 (2)	C4—Fe1—C6—C10	-43.4 (5)

C9—Fe1—C1—C2	170.9 (2)	C11—C6—C7—C8	-179.5 (3)
C4—Fe1—C1—C2	81.9 (2)	C10—C6—C7—C8	0.6 (3)
C3—Fe1—C1—C5	-81.3 (2)	Fe1—C6—C7—C8	59.8 (2)
C2—Fe1—C1—C5	-119.2 (3)	C11-C6-C7-Fe1	120.7 (3)
C7—Fe1—C1—C5	168.67 (17)	C10-C6-C7-Fe1	-59.20 (19)
C8—Fe1—C1—C5	-161.9 (5)	C3—Fe1—C7—C8	86.4 (2)
C10—Fe1—C1—C5	84.8 (2)	C2—Fe1—C7—C8	129.4 (2)
C6—Fe1—C1—C5	128.05 (18)	C1—Fe1—C7—C8	169.92 (19)
C9—Fe1—C1—C5	51.7 (3)	C10—Fe1—C7—C8	-80.7 (2)
C4—Fe1—C1—C5	-37.32 (18)	C5—Fe1—C7—C8	-158.5 (4)
C5—C1—C2—C3	0.2 (3)	C6—Fe1—C7—C8	-118.8 (3)
Fe1—C1—C2—C3	-59.7 (2)	C9—Fe1—C7—C8	-37.2 (2)
C5-C1-C2-Fe1	59.9 (2)	C4—Fe1—C7—C8	51.7 (4)
C3—Fe1—C2—C1	-118.6 (3)	C3—Fe1—C7—C6	-154.81 (18)
C7—Fe1—C2—C1	128.06 (19)	C2—Fe1—C7—C6	-111.85 (19)
C8—Fe1—C2—C1	168.36 (18)	C1—Fe1—C7—C6	-71.3 (2)
C10—Fe1—C2—C1	49.0 (3)	C8—Fe1—C7—C6	118.8 (3)
C5—Fe1—C2—C1	-37.52 (18)	C10—Fe1—C7—C6	38.03 (17)
C6—Fe1—C2—C1	84.6 (2)	C5—Fe1—C7—C6	-39.7 (6)
C9—Fe1—C2—C1	-160.8 (5)	C9—Fe1—C7—C6	81.60 (19)
C4—Fe1—C2—C1	-80.9 (2)	C4—Fe1—C7—C6	170.5 (2)
C1—Fe1—C2—C3	118.6 (3)	C6—C7—C8—C9	-0.1 (3)
C7—Fe1—C2—C3	-113.3 (2)	Fe1—C7—C8—C9	59.6 (2)
C8—Fe1—C2—C3	-73.0 (2)	C6—C7—C8—Fe1	-59.75 (19)
C10—Fe1—C2—C3	167.7 (2)	C3—Fe1—C8—C9	128.4 (2)
C5—Fe1—C2—C3	81.1 (2)	C2—Fe1—C8—C9	169.54 (19)
C6—Fe1—C2—C3	-156.79 (19)	C1—Fe1—C8—C9	-156.0 (5)
C9—Fe1—C2—C3	-42.2 (6)	C7—Fe1—C8—C9	-119.5 (3)
C4—Fe1—C2—C3	37.74 (18)	C10—Fe1—C8—C9	-37.05 (19)
C1—C2—C3—C4	-0.3 (3)	C5—Fe1—C8—C9	49.5 (4)
Fe1—C2—C3—C4	-60.1 (2)	C6—Fe1—C8—C9	-81.4 (2)
C1—C2—C3—Fe1	59.8 (2)	C4—Fe1—C8—C9	85.0 (2)
C1—Fe1—C3—C2	-37.89 (19)	C3—Fe1—C8—C7	-112.1 (2)
C7—Fe1—C3—C2	84.7 (2)	C2—Fe1—C8—C7	-70.9 (2)
C8—Fe1—C3—C2	128.1 (2)	C1—Fe1—C8—C7	-36.5 (6)
C10—Fe1—C3—C2	-155.0 (5)	C10—Fe1—C8—C7	82.5 (2)
C5—Fe1—C3—C2	-81.6 (2)	C5—Fe1—C8—C7	169.0 (2)
C6—Fe1—C3—C2	48.1 (3)	C6—Fe1—C8—C7	38.17 (19)
C9—Fe1—C3—C2	168.64 (19)	C9—Fe1—C8—C7	119.5 (3)
C4—Fe1—C3—C2	-119.1 (3)	C4—Fe1—C8—C7	-155.52 (19)
C2—Fe1—C3—C4	119.1 (3)	C7—C8—C9—C10	-0.4 (4)
C1—Fe1—C3—C4	81.2 (2)	Fe1—C8—C9—C10	58.9 (2)
C7—Fe1—C3—C4	-156.23 (18)	C7—C8—C9—Fe1	-59.3 (2)
C8—Fe1—C3—C4	-112.8 (2)	C3—Fe1—C9—C8	-72.4 (2)
C10—Fe1—C3—C4	-35.9 (6)	C2—Fe1—C9—C8	-38.2 (6)
C5—Fe1—C3—C4	37.50 (18)	C1—Fe1—C9—C8	168.5 (2)
C6—Fe1—C3—C4	167.2 (2)	C7—Fe1—C9—C8	37.59 (19)
C9—Fe1—C3—C4	-72.3 (2)	C10—Fe1—C9—C8	120.3 (3)
C2—C3—C4—C5	0.3 (3)	C5—Fe1—C9—C8	-156.08 (19)

Fe1—C3—C4—C5	-59.5 (2)	C6—Fe1—C9—C8	81.9 (2)
C2—C3—C4—Fe1	59.8 (2)	C4—Fe1—C9—C8	-113.3 (2)
C3—Fe1—C4—C5	119.0 (3)	C3—Fe1—C9—C10	167.30 (18)
C2—Fe1—C4—C5	81.3 (2)	C2—Fe1—C9—C10	-158.5 (5)
C1—Fe1—C4—C5	37.50 (18)	C1—Fe1—C9—C10	48.2 (3)
C7—Fe1—C4—C5	169.1 (2)	C7—Fe1—C9—C10	-82.72 (19)
C8—Fe1—C4—C5	-155.12 (19)	C8—Fe1—C9—C10	-120.3 (3)
C10—Fe1—C4—C5	-71.3 (2)	C5—Fe1—C9—C10	83.6 (2)
C6—Fe1—C4—C5	-36.5 (5)	C6—Fe1—C9—C10	-38.43 (18)
C9—Fe1—C4—C5	-112.5 (2)	C4—Fe1—C9—C10	126.40 (19)
C2—Fe1—C4—C3	-37.72 (19)	C8—C9—C10—C6	0.8 (3)
C1—Fe1—C4—C3	-81.5 (2)	Fe1—C9—C10—C6	59.73 (19)
C7—Fe1—C4—C3	50.1 (4)	C8-C9-C10-Fe1	-58.9 (2)
C8—Fe1—C4—C3	85.9 (2)	C11—C6—C10—C9	179.2 (3)
C10—Fe1—C4—C3	169.76 (19)	C7—C6—C10—C9	-0.8 (3)
C5—Fe1—C4—C3	-119.0 (3)	Fe1—C6—C10—C9	-60.0 (2)
C6—Fe1—C4—C3	-155.5 (4)	C11-C6-C10-Fe1	-120.8 (3)
C9—Fe1—C4—C3	128.6 (2)	C7-C6-C10-Fe1	59.11 (19)
C3—C4—C5—C1	-0.2 (3)	C3—Fe1—C10—C9	-45.3 (6)
Fe1—C4—C5—C1	-59.2 (2)	C2—Fe1—C10—C9	169.9 (2)
C3—C4—C5—Fe1	59.0 (2)	C1—Fe1—C10—C9	-156.46 (19)
C2C1C5C4	0.0 (3)	C7—Fe1—C10—C9	80.5 (2)
Fe1—C1—C5—C4	59.6 (2)	C8—Fe1—C10—C9	36.76 (19)
C2-C1-C5-Fe1	-59.6 (2)	C5—Fe1—C10—C9	-113.9 (2)
C3—Fe1—C5—C4	-37.89 (19)	C6—Fe1—C10—C9	118.5 (3)
C2—Fe1—C5—C4	-81.8 (2)	C4—Fe1—C10—C9	-74.1 (2)
C1—Fe1—C5—C4	-119.4 (3)	C3—Fe1—C10—C6	-163.8 (5)
C7—Fe1—C5—C4	-158.9 (5)	C2—Fe1—C10—C6	51.5 (3)
C8—Fe1—C5—C4	51.7 (3)	C1—Fe1—C10—C6	85.1 (2)
C10—Fe1—C5—C4	128.14 (19)	C7—Fe1—C10—C6	-37.97 (17)
C6—Fe1—C5—C4	169.15 (17)	C8—Fe1—C10—C6	-81.69 (19)
C9—Fe1—C5—C4	85.7 (2)	C5—Fe1—C10—C6	127.62 (18)
C3—Fe1—C5—C1	81.5 (2)	C9—Fe1—C10—C6	-118.5 (3)
C2—Fe1—C5—C1	37.61 (19)	C4—Fe1—C10—C6	167.43 (17)
C7—Fe1—C5—C1	-39.5 (6)	C18-C13-C14-F1	-179.7 (2)
C8—Fe1—C5—C1	171.1 (3)	C12-C13-C14-F1	1.4 (4)
C10—Fe1—C5—C1	-112.45 (19)	C18—C13—C14—C15	0.2 (4)
C6—Fe1—C5—C1	-71.4 (2)	C12-C13-C14-C15	-178.7 (3)
C9—Fe1—C5—C1	-154.93 (19)	F1-C14-C15-F2	-1.7 (4)
C4—Fe1—C5—C1	119.4 (3)	C13-C14-C15-F2	178.4 (2)
C3—Fe1—C6—C11	-68.3 (4)	F1-C14-C15-C16	179.7 (2)
C2—Fe1—C6—C11	-35.1 (3)	C13-C14-C15-C16	-0.2 (4)
C1—Fe1—C6—C11	7.5 (3)	F2-C15-C16-F3	3.0 (4)
C7—Fe1—C6—C11	-121.1 (3)	C14—C15—C16—F3	-178.4 (2)
C8—Fe1—C6—C11	-158.9 (3)	F2-C15-C16-C17	-178.2 (2)
C10—Fe1—C6—C11	120.0 (3)	C14—C15—C16—C17	0.4 (4)
C5—Fe1—C6—C11	47.6 (3)	F3—C16—C17—F4	-1.9 (4)
C9—Fe1—C6—C11	157.8 (3)	C15—C16—C17—F4	179.4 (3)
C4—Fe1—C6—C11	76.5 (5)	F3—C16—C17—C18	178.2 (2)

C3—Fe1—C6—C7	52 8 (3)	C15-C16-C17-C18	-0.6(4)
	52.8 (S)		0.0 (+)
C2—FeI—C6—C/	86.0 (2)	F4	1.2 (4)
C1—Fe1—C6—C7	128.66 (18)	C16—C17—C18—F5	-178.9 (2)
C8—Fe1—C6—C7	-37.81 (19)	F4-C17-C18-C13	-179.3 (2)
C10—Fe1—C6—C7	-118.9 (3)	C16-C17-C18-C13	0.6 (4)
C5—Fe1—C6—C7	168.71 (17)	C14—C13—C18—F5	179.1 (2)
C9—Fe1—C6—C7	-81.1 (2)	C12-C13-C18-F5	-2.0 (4)
C4—Fe1—C6—C7	-162.3 (4)	C14—C13—C18—C17	-0.4 (4)
C3—Fe1—C6—C10	171.8 (2)	C12-C13-C18-C17	178.5 (3)
C2—Fe1—C6—C10	-155.05 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C10—H10…F5 ⁱ	0.93	2.50	3.176 (3)	130
Symmetry codes: (i) $-x+1, -y+2, -z+2$.				

